Optimization of a GCaMP calcium indicator for neural activity imaging.

نویسندگان

  • Jasper Akerboom
  • Tsai-Wen Chen
  • Trevor J Wardill
  • Lin Tian
  • Jonathan S Marvin
  • Sevinç Mutlu
  • Nicole Carreras Calderón
  • Federico Esposti
  • Bart G Borghuis
  • Xiaonan Richard Sun
  • Andrew Gordus
  • Michael B Orger
  • Ruben Portugues
  • Florian Engert
  • John J Macklin
  • Alessandro Filosa
  • Aman Aggarwal
  • Rex A Kerr
  • Ryousuke Takagi
  • Sebastian Kracun
  • Eiji Shigetomi
  • Baljit S Khakh
  • Herwig Baier
  • Leon Lagnado
  • Samuel S-H Wang
  • Cornelia I Bargmann
  • Bruce E Kimmel
  • Vivek Jayaraman
  • Karel Svoboda
  • Douglas S Kim
  • Eric R Schreiter
  • Loren L Looger
چکیده

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium imaging with genetically encoded indicators in behaving primates

Understanding the neural basis of behaviour requires studying brain activity in behaving subjects using complementary techniques that measure neural responses at multiple spatial scales, and developing computational tools for understanding the mapping between these measurements. Here we report the first results of widefield imaging of genetically encoded calcium indicator (GCaMP6f) signals from...

متن کامل

Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish.

Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and crea...

متن کامل

Fast calcium sensor proteins for monitoring neural activity.

A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in som...

متن کامل

Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.

Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics ...

متن کامل

Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice

The ability to chronically monitor neuronal activity in the living brain is essential for understanding the organization and function of the nervous system. The genetically encoded green fluorescent protein-based calcium sensor GCaMP provides a powerful tool for detecting calcium transients in neuronal somata, processes, and synapses that are triggered by neuronal activities. Here we report the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 40  شماره 

صفحات  -

تاریخ انتشار 2012